5 research outputs found

    Faster Ray Tracing through Hierarchy Cut Code

    Full text link
    We propose a novel ray reordering technique to accelerate the ray tracing process by encoding and sorting rays prior to traversal. Instead of spatial coordinates, our method encodes rays according to the cuts of the hierarchical acceleration structure, which is called the hierarchy cut code. This approach can better adapt to the acceleration structure and obtain a more reliable encoding result. We also propose a compression scheme to decrease the sorting overhead by a shorter sorting key. In addition, based on the phenomenon of boundary drift, we theoretically explain the reason why existing reordering methods cannot achieve better performance by using longer sorting keys. The experiment demonstrates that our method can accelerate secondary ray tracing by up to 1.81 times, outperforming the existing methods. Such result proves the effectiveness of hierarchy cut code, and indicate that the reordering technique can achieve greater performance improvement, which worth further research

    The optimal second-line therapy for older adults with type 2 diabetes mellitus: protocol for a systematic review and network meta-analysis using individual participant data (IPD)

    Get PDF
    Background: Due to increasing life expectancy, almost half of people with type 2 diabetes are aged 65 years or over worldwide. When metformin alone does not control blood sugar, the choice of which second-line therapy to prescribe next is not clear from currently available evidence. The existence of frailty and comorbidities in older adults further increases the complexity of medical decision-making. As only a relatively small proportion of trials report results separately for older adults, the relative efficacy and safety of second-line therapies in older adults with type 2 diabetes mellitus are unknown and require further investigation. This individual participant data (IPD) network meta-analysis evaluates the relative efficacy and safety of second-line therapies on their own or in combination in older adults with type 2 diabetes mellitus. Methods: All relevant published and unpublished trials will be identified. Studies published prior to 2015 will be identified from two previous comprehensive aggregate data network meta-analyses. Searches will be conducted in CENTRAL, MEDLINE, and EMBASE from 1st January 2015 onwards, and in clinicaltrials.gov from inception. Randomised controlled trials with at least 100 estimated older adults (≥ 65 years) receiving at least 24 weeks of intervention that assess the effects of glucose-lowering drugs on mortality, glycemia, vascular and other comorbidities outcomes, and quality of life will be eligible. The screening and data extraction process will be conducted independently by two researchers. The quality of studies will be assessed using the Cochrane risk of bias tool 2. Anonymised IPD of all eligible trials will be requested via clinical trial portals or by contacting the principal investigators or sponsors. Received data will be reanalysed where necessary to standardise outcome metrics. Network meta-analyses will be performed to determine the relative effectiveness of therapies. Discussion: With the increasing number of older adults with type 2 diabetes worldwide, an IPD network meta-analysis using data from all eligible trials will provide new insights into the optimal choices of second-line antidiabetic drugs to improve patient management and reduce unnecessary adverse events and the subsequent risk of comorbidities in older adults. Systematic review registration: PROSPERO CRD42021272686

    Associations of antidiabetic drugs with diabetic retinopathy in people with type 2 diabetes: an umbrella review and meta-analysis

    Get PDF
    BackgroundDiabetic retinopathy (DR) is the most frequent complication of type 2 diabetes and remains the leading cause of preventable blindness. Current clinical decisions regarding the administration of antidiabetic drugs do not sufficiently incorporate the risk of DR due to the inconclusive evidence from preceding meta-analyses. This umbrella review aimed to systematically evaluate the effects of antidiabetic drugs on DR in people with type 2 diabetes.MethodsA systematic literature search was undertaken in Medline, Embase, and the Cochrane Library (from inception till 17th May 2022) without language restrictions to identify systematic reviews and meta-analyses of randomized controlled trials or longitudinal studies that examined the association between antidiabetic drugs and DR in people with type 2 diabetes. Two authors independently extracted data and assessed the quality of included studies using the AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist, and evidence assessment was performed using the GRADE (Grading of recommendations, Assessment, Development and Evaluation). Random-effects models were applied to calculate relative risk (RR) or odds ratios (OR) with 95% confidence intervals (CI). This study was registered with PROSPERO (CRD42022332052).ResultsWith trial evidence from 11 systematic reviews and meta-analyses, we found that the use of glucagon-like peptide-1 receptor agonists (GLP-1 RA), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), or dipeptidyl peptidase-4 inhibitors (DPP-4i) was not statistically associated with the risk of DR, compared to either placebo (RR: GLP-1 RA, 0.98, 0.89-1.08; SGLT-2i, 1.00, 95% CI 0.79-1.27; DPP-4i, 1.17, 0.99-1.39) or other antidiabetic drugs. Compared to other antidiabetic drugs, meglitinides (0.34, 0.01-8.25), SGLT-2i (0.73, 0.10-5.16), thiazolidinediones (0.92, 0.67-1.26), metformin (1.15, 0.81-1.63), sulphonylureas (1.24, 0.93-1.65), and acarbose (4.21, 0.44-40.43) were not statistically associated with the risk of DR. With evidence from longitudinal studies only, insulin was found to have a higher risk of DR than other antidiabetic drugs (OR: 2.47, 95% CI: 2.04-2.99).ConclusionOur results indicate that antidiabetic drugs are generally safe to prescribe regarding the risk of DR among people with type 2 diabetes. Further robust and large-scale trials investigating the effects of insulin, meglitinides, and acarbose on DR are warranted.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?RecordID=332052, identifier CRD42022332052

    The optimal second-line therapy for older adults with type 2 diabetes mellitus:protocol for a systematic review and network meta-analysis using individual participant data (IPD)

    Get PDF
    Background: Due to increasing life expectancy, almost half of people with type 2 diabetes are aged 65 years or over worldwide. When metformin alone does not control blood sugar, the choice of which second-line therapy to prescribe next is not clear from currently available evidence. The existence of frailty and comorbidities in older adults further increases the complexity of medical decision-making. As only a relatively small proportion of trials report results separately for older adults, the relative efficacy and safety of second-line therapies in older adults with type 2 diabetes mellitus are unknown and require further investigation. This individual participant data (IPD) network meta-analysis evaluates the relative efficacy and safety of second-line therapies on their own or in combination in older adults with type 2 diabetes mellitus. Methods: All relevant published and unpublished trials will be identified. Studies published prior to 2015 will be identified from two previous comprehensive aggregate data network meta-analyses. Searches will be conducted in CENTRAL, MEDLINE, and EMBASE from 1st January 2015 onwards, and in clinicaltrials.gov from inception. Randomised controlled trials with at least 100 estimated older adults (≥ 65 years) receiving at least 24 weeks of intervention that assess the effects of glucose-lowering drugs on mortality, glycemia, vascular and other comorbidities outcomes, and quality of life will be eligible. The screening and data extraction process will be conducted independently by two researchers. The quality of studies will be assessed using the Cochrane risk of bias tool 2. Anonymised IPD of all eligible trials will be requested via clinical trial portals or by contacting the principal investigators or sponsors. Received data will be reanalysed where necessary to standardise outcome metrics. Network meta-analyses will be performed to determine the relative effectiveness of therapies. Discussion: With the increasing number of older adults with type 2 diabetes worldwide, an IPD network meta-analysis using data from all eligible trials will provide new insights into the optimal choices of second-line antidiabetic drugs to improve patient management and reduce unnecessary adverse events and the subsequent risk of comorbidities in older adults. Systematic review registration: PROSPERO CRD42021272686
    corecore